Graphic depiction of Kilometer-Scale Space Structures from a Single Launch. Credit: Zac Manchester
Artificial gravity is still a science fiction concept. However, coping with zero gravity causes a variety of issues among astronauts, ranging from bone degradation to vision loss. “Simulated gravity,” which employs a spinning device to produce a centrifugal force that has the same impact on the body as gravity, is an alternative route that might solve some of these issues. Still, it remains to be seen if this will fix the issues presented by a lack of gravity. Despite this, NASA appears to be interested in the concept, awarding a $600,000 NASA Institute for Advanced Concepts (NIAC) Phase II grant to a team from Carnegie Mellon University (CMU) and the University of Washington (UW) to develop a structure that can simulate full Earth gravity and be launched in a single rocket.
Diseases develop in space
On previous space flights, astronauts took an average of 20 doses of different medications per week.
Eyal explained that when astronauts start their career, they’re healthy, but they may develop diseases the longer they are in space.
The flight
Given that planes involved in zero-gravity research have been nicknamed as “the vomit comet,” Stephens was justified in having some nerves. Because of the parabola maneuvers necessary to create the zero-gravity environment, there are also portions where flight participants experience 2G, or twice the force of normal Earth gravity. That meant that crew had to set up print jobs and pull paper out of the tray while their bodies were being pressed into the floor of the aircraft.
One challenge in testing the HP Envy printer was just timing when to press the “print” button, recalls Aaron Persad, a researcher with MIT that was hired by Integrated Space Flight Services to provide assistance with the NRC flight. Some of the test patterns the researchers wanted to print would require almost the entire 15 to 25 seconds of zero-gravity created at the apex of each parabola.
Ring around the spaceship
If you’ve ever been on a carnival ride like the spinning teacups, you’ve felt artificial gravity. When you are inside a large, spinning object, you will feel a pull towards the outside wall. This is because of inertia. Your body is resisting the change in motion of the object spinning around you.
We feel inertia as something that doesn’t exist — centrifugal force. This force seems to pull us to the outside edge of the rotating teacup.